

Comparison between Polymerization Techniques for synthesis of Energetic Thermoplastic Elastomers

Khalifa Al-Kaabi and Albert Van Reenen

Department for Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa khalifa1@eim.ae

Presented at
2009 Insensitive Munitions & Energetic Materials Technology
Symposium
Tucson, AZ
May 11 - 14, 2009

Lower cost solutions for 21st Century IM/EM Requirements

Outlines of presentation

- Introduction
 - Insensitive munitions (IM)
 - GAP binder
- Polymerization methods
 - Redox polymerization techniques
 - Nitroxide-mediated process
 - Dithiocarbamate inferiter
 - Energetic thermoplastic polyurethane
- Conclusions
- Acknowledgments

Insensitive munitions (IM)

- High vulnerability of ammunitions and development of insensitive munitions (IM).
- Requirements for Insensitive munitions criteria
 - high performance, low sensitivity, environmental acceptance, and reasonable costs.
- Applied of polymeric materials (inert/energetic) in low sensitivity munitions (binders/plasticizers).

Redox polymerization techniques

- Cerium (IV) ions used in synthesis PMMA-b-PGA copolymers based on using redox polymerization.
- Thermal analysis shows compatibility of two different segments from DSC thermal analysis
- Tensile mechanical test shows considerable decrease in tensile stress and increase in elongation values with the increase of PGA content in the block copolymer

Nitroxide-mediated process

- Preparation and characterization of PS-b-PGA and PVAc-b-PGA block copolymers.
- Thermal analysis showed that PGA is forming miscible and compatible block with PS and PVAc.

Figure 6 TGA curves of PVAc-b-PGA block copolymer (run no. 5 in Table II).

Controlled/living Free radical polymerization

- Characteristics of Living/Controlled radical polymerization.
- Requirements for living/controlled free radical polymerization.
- Living/controlled radical polymerization methods
 - Dithiocarbamate iniferters
 - Atom transfer radical polymerization (ATRP)
 - Reversible addition-fragmentation transfer (RAFT)

Scheme 6.7 The reaction of hydroxyl terminated poly(epichlorohydrin) with sodium diethyl dithiocarbamate to produce *N*,*N*-diethyl dithiocarbamate-poly(epichlorohydrin) (R is 1, 4-butanediol).

Scheme 6.8 Proposed reaction mechanism for the synthesis of *N*,*N*-diethyl dithiocarbamate-glycidyl azide polymer photoinitiators by the reaction of *N*,*N*-diethyl dithiocarbamate-poly(epichlorohydrin) photoinitiators with sodium azide in DMF (R is 1, 4-butanediol).

Figure.1. ¹³C NMR(CDCl₃) spectrum of GAP Macro-initiators.

Figure 2. GPC profiles of photopolymerization of methyl methacrylate in toluene initiated by GAP-Macroinitiator.

Figure 3 First-order time- conversion plots for the photopolymerization of MMA in toluene initiated by GAP-g-DDC ([GAP-g-DDC]/ [MMA] =0.014).

Figure 4 FT-IR spectrum of PMMA-g-GAP (black line) and PSt-g-GAP (red line) copolymer.

Figure 5 DSC traces of PMMA-g-GAP copolymer (1.159 mg).

Energetic thermoplastic polyurethane

- Thermoplastic polyurethane (TPU) is an (ABA)n or AB type thermoplastic elastomer.
- The constitution of A and B in this linear block copolymer and their sequence length play an important role in the physical properties of TPEs.
- The chemical structure of hard and soft segments and their ratio form an integral part of molecular design for an optimum TPE binder.

Polymerization techniques

CONCLUSIONS

- Energetic thermoplastic elastomers and polymerization techniques.
- Polymerization techniques affect the final properties.
- Polymeric binder based on using economical polymerization techniques and invariable properties (physical and chemical) is the main requirements for 21st century IM.

ACKNOWLEDGEMENTS

Authors would like to acknowledge NASCHEM, a division of Denel Pty Ltd for financial support.

